Class IX Math Circles (EXERCISE 10.5) CH-10

Class IX Math
NCERT Solution for Circles
EXERCISE 10.5
Q1.  In the figure, A, B and C are three points on a circle with centre O such that ∠BOC = 30° and ∠AOS = 60°. If D is a point on the circle other than the arc ABC, find ∠ADC.
Solution: We have a circle with centre O, such that ∠AOB 60° and ∠BOC = 30°
          
∵ ∠AOB + ∠BOC = ∠AOC
          
∴ ∠AOC = 60° + 30° = 90°
          
Now, the arc ABC subtends ∠AOC = 90° at the centre and ∠ADC at a point D on the circle other than the arc ABC.
 
Q2.  A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
Solution: We have a circle having a chord AB equal to radius of the circle.
          ∴ AO = BO = AB
          
∴ ΔAOB is an equilateral triangle.
          
Since, each angle of an equilateral = 60°.
          
⇒ ∠AOB = 60°
          
Since, the arc ACB makes reflex ∠AOB = 360° – 60° = 300° at the centre of the circle and ∠ABC at a point on the minor arc of the circle.   
          
Thus, the angle subtended by the chord on the minor arc = 150° and on the major arc = 30°.
Q3.  In the figure, ∠PQR = 100°, where P, Q and R are points on a circle with centre O. Find ∠OPR.
Solution: The angle subtended by an arc of a circle at its centre is twice the angle subtended by the same arc at a point on the p circumference.
         
∴ reflex ∠POR = 2∠PQR
          
But ∠POR = 100°
          
∴ reflex ∠POR = 2 × 100° = 200°
          
Since, ∠POR + reflex = ∠POR = 360°
          
⇒ ∠POR + 200° = 360°
          
⇒ ∠POR = 360°
          
⇒ ∠POR = 360° – 200°
          
⇒ ∠POR = 160°
          
Since, OP = OR
          
∴ In ∠POR, ∠OPR = ∠OPR
         
 Also, ∠OPR + ∠ORP + ∠POR = 180°
               
∠OPR + ∠ORP + 160° = 180°
               
2∠OPR = 180° – 160° = 20° 
Q4.  In the figure, ∠ABC = 69° ∠ACB 31°, find ∠BDC.
Solution: We have, in ΔABC,
               
∠ABC = 69° and ∠ACB = 31°
          
But ∠ABC + ∠ACB + ∠BAC = 180°
          
∴ 69° + 31° + ∠BAC = 180°
          
⇒ ∠BAC = 180° – 69° – 31° = 80°
          
Since, angles in the same segment are equal.
          ∴ ∠BAC = ∠BAC
          ⇒ ∠BDC = 80°
Q5.  In the figure, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠BEC = 130° and ∠ECD = 20°.Find ∠BAC.
Solution: In ΔCDE,
          
Exterior ∠BEC = {Sum of interior opposite angles}
              
[BD is a straight line.]
             
130° = ∠EDC + ∠ECD
               
130° = ∠EDC + 20°
          
⇒ ∠EDC = 130° – 20° = 110°
          
⇒ ∠BDC = 110°
          
Since, angles in the same segment are equal.
               
∠BAC = ∠BDC
          
⇒ ∠BAC = 110°
Q6.  ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC = 70°, ∠BAC is 30°, find ∠BCD. Further, if AB = BC, find ∠ECD.
Solution: ∵ Angles in teh same segment of a circle are equal.
          
∴ ∠BAC = ∠BDC
          
⇒ 30° = ∠BDC
          
Also ∠DBC=70°                                                   [Given]
          
∴In ΔBCD, we have
               
∠BCD + ∠DBC + ∠CDB = 180°               [Sum of angles of a triangle is 180°]
          
⇒ ∠BCD + 70° + 30° = 180°
          
⇒ ∠BCD = 180° – 70° – 30° = 80°
          
Now, in ΔABC,
               
AB = BC
          
⇒ ∠BCA = ∠BAC           [Angles opposite to equal sides of a triangle are equal]
          
⇒∠BCA = 30°
          
Now, ∠BCA = ∠ECD = ∠BCD
          
⇒ 30° + ∠ECD = 80°
          
⇒ ∠ECD = 80° – 30° = 50°
Q7.  If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
Solution: ∵AC and BD are diameters.
 ∴ AC = BD                  [∵All diameters of a circle are equal]
          
Since a diameter divides a circle into equal parts.
               
∠ABC = 90°
               
∠BCD = 90°and ∠CDA = 90°
          
Now, in right ΔABC and right ΔBAD,
               
AC = BD                                                            [From (1)]
               
AB = AB                                                            [Common]
          
∴ ABC ≌ ΔBAD                                                  [RHS criterion]
          
⇒ BC = AD                                                            [c.p.c.t.]
          
Similarly, AB = CD
          
Thus, the cyclic quadrilateral ABCD is such that its opposite sides are equal and each of its angle is right angle.
Q8.  If the nonparallel sides of a trapezium are equal, prove that it is cyclic. Solution: We have a trapezium ABCD such that AB || CD and AD = BC.
          
Solution : Let us draw BE || AD such that ABED is a parallelogram.
         
 ∵The opposite angles of a parallelogram are equal.
          
∴ ∠BAD =∠BED                                                 …(1)
 and AD = BE        [Opposite sides of a parallelogram] …(2)
   But AD = BC                                                    [Given] …(3)
∴ From (2) and (3), we have
   BE = BC
⇒ ∠BEC = ∠BCE          [Angles opposite to equal sides of a triangle Δ are equal] …(4)
          
Now, ∠BED + ∠BEC = 180°                           [Linear pairs]
          
⇒ ∠BAD + ∠BCE = 180°                        [Using (1) and (4)]
          
i.e. A pair of opposite angles of quadrilateral ABCD is 180°.
          
∴ ABCD is cyclic.
          
⇒ The trapezium ABCD is a cyclic.
Q9.  Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see the figure). Prove that ∠ACP = ∠QCD.
Solution: Since angles in the same segment of a circle are equal.
          
∴ ∠ACP = ∠ABP                                                              …(1)
         
 Similarly, ∠QCD = ∠QBD                                            …(2)
          
Since ∠ABP = ∠QBD       [Vertically opposite angles are equal]
          
From (1) and (2), we have
              
 ∠ACP = ∠QCD
EXERCISE 10.5 Class IX
Q10.  If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
Solution: We have a ΔABC, and two circles described with diameters as AB and AC respectively. They intersect in a point D.
          
Let us join A and D.
          
AB is a diameter.
          
∴ ∠ADE is an angle formed in a semicircle.
          
⇒ ∠ADB = 90°                                                      …(1)
          
Similarly, ∠ADC = 90°                                        …(2)
          
Adding (1) and (2), we have
               
∠ADB + ∠ADC = 90° + 90° = 180°
         
 i.e. B, D and C are collinear points.
          
⇒ BC is a straight line.
          
Thus, D lies on BC.
EXERCISE 10.5 Class IX
Q11.  ABC and ADC are two right triangles with common hypotenuse AC. Prove that ∠CAD = ∠CBD.
Solution: We have right ΔABC and right ΔADC such that they are having AC as their common hypotenuse.
          ∵ AC is a hypotenuse.
         
 ∵ ∠ADC = 90° = ∠ABC
         
 ∴ Both the triangles are in the same semicircle.
        
  ⇒ A, B, C and D are concyclic.
          
Let us join B and D.
          
∵ DC is a chord.
          
∴ ∠CAD and ∠CBD are formed in the same segment.
          
⇒ ∠CAD = ∠CBD.
Q12.  Prove that a cyclic parallelogram is a rectangle.
Solution: We have a cyclic parallelogram ABCD.
          
Since, ABCD is a cyclic quadrilateral.
          
∴ Sum of its opposite angles = 180°
          
⇒∠A + ∠C = 180°                                                            …(1)
          
But∠A = ∠C                                                                       …(2)
[Opposite angles of parallelogram are equal]
          
From (1) and (2), we have
               
∠A = ∠C = 90°
         
 Similarly, ∠B = ∠D = 90°
          
⇒ Each angle of the parallelogram ABCD is of 90°.
         

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!