Class IX Math Circles (EXERCISE 10.4) CH-10

Class IX Math
NCERT Solution for Circles
EXERCISE 10.4
Q1.  Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chrod.
Solution: We have two intersecting circles with centres at O and O’ respectively.
          
Let PQ be the common chord.
          
∵ In two intersecting circles, the line joining their centres is perpendicular bisector of teh common chord.
          
∴ ∠OLP = ∠OLP = 90°
   PL = PQ
  Now in right ∠OLP,
  PL2 + OL2 = OP2
⇒ PL2 + (4 – x)2 = 52
⇒ PL2 = 52 – (4 – x)2
⇒ PL2 = 25 – 16 – x2 + 8x
⇒ PL2 = 9 – x2 + 8x                                             …(1)
          
Again, in ΔO’LP,
PL2 = 32 – x2 = 9 – x2                                        …(2)
From (1) and (2), we have
9 – x2 + 8x = 9 – x2
⇒ 8x = 0
⇒ x = 0
⇒ L and O’ coincide.
∴ PQ is a diameter of the smaller circle.
⇒ PL = 3 cm
   But PL = LQ
∴ LQ = 3cm
PQ = PL + LQ = 3 cm + 3 cm = 6 cm
          
Thus, the required length of the common chord = 6 cm.
Q2.  If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
Solution: We have a circle with centre O. Equal chords AB and CD intersect at E.
          
To prove that AE = DE and CE = BE, draw OM ⊥ AB and ON ⊥ CD.
Since,    AB = CD                                      [Given]
 ∴OM=ON                             [Equal chords are equidisitant from teh centre.]
         
 Now, in right ΔOME and right ΔONE,
OM = ON                                     [Proved]
OE = OE                                     [Common]
∴ ΔOME ≌ ΔONE                [RHS criterion]
ME = NE                                       [c.p.c.t]
 
⇒ AE = DE                                     …(1)
          
Since AB = CD                              [Given]
∴ AB – AE = CD – DE
⇒ CE = BE                                      …(2)
          
From (1) and (2), we have
AE = DE and CE = BE
Q3.  If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
Solution: We have a circle with centre O and equal chords AB and CD are intersecting at E. OE is joined.
A To prove that ∠1 = ∠2,let us draw OM ⊥ AB and ON ⊥ CD.
          
In right ΔOME and right ΔONE,
OM = ON                              [Equal chords are equidistant from the centre.]
OE = OE                                                [Common]
∴ ΔOME ≌ ΔONE                           [RHS criterion]
          
⇒ Their corresponding parts are equal.
∴ ∠OEM = ∠OEN
or ∠OEA = ∠OED
Class IX EXERCISE 10.4
Q4.  If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD (see figure).
Solution: We have two circles with the common centre O.
A line ‘l’ intersects the outer circle at A and D and the inner circle at B and C. To prove that AB = CD,
let us draw OM ⊥ l.
          
For the outer circle,
⇒ OM ⊥ l                                             [Construction]
∴ AM = MD                                        [Perpendicular from the centre to the chord bisects the chord]
…(1)
          
For the inner circle,
OM ⊥ l                                                         [Construction]
∴BM = MC                                             [Perpendicular from the centre to the chord bisects the chord]              …(2)
          
Subtracting (2) from (1), we have
AM – BM = MD – MC
AB = CD
Q5.  Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a hall to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?
Solution: Let the three girls Reshma, Salma and Mandip are positioned at R, S and M, respectively on the circle of radius 5 m.
RS = SM = 6 m                                                            [Given]
Equal chords of a circle subtend equal angles at the centre.
              
∠1 = ∠2
In ΔPOR and ΔPOM,
OP = OP                                                        [Common]
OR = OM                                          [Radii of the same circle]
∠1 = ∠2                                                            [Proved]
∴ ΔPOR ≌ΔPOM                                     [SAS criterion]
⇒ Their corresponding parts are equal.
∴ PR = PM and ∠OPR = ∠OPM
∵ ∠OPR + ∠OPM = 180°                          [Linear pairs]
∴ ∠OPR = ∠OPM = 90°
⇒ OP⊥RM
Now, in A RSP and A MSP,                         [6 m each]
RS=MS                                                            [Common]
SP = SP
∠RSP = ∠MSP
∴ΔRSP ≌ΔMSP                                          [SAS criterion]
But ∠RSP + ∠MSP = 180°
⇒∠RPS = ∠MSP = 90°                                   [Each]
 ∴ SP passes through O.
Let OP = x m
∴ SP = (5 – x) m
Now, in right ΔOPR,
x2 + RP2 = 52
In right ΔSPR,
(5 – x)2 + RP2 = 62
From (1), RP2 = 52 – x2
From (2), RP2 = 62 – (5 – x)2
∴ 52 – x2 = 62 – (5 – x)2
⇒ 25 – x2 = 36 –[25 – 10x + x2]
⇒ 25 – x2 – 36 –[25 – 10x + x2 = 0
⇒ –10x + 14 = 0 ⇒ 10x = 14
 
Now, RP2 = 52 – x2 ⇒RP2 = 25 – (1.4)2
          
⇒ RP2 = 25 – 1.96 = 23.04 m
 
∴ RM = 2 RP = 2 × 4.8 m = 9.6 m
Thus, distance between Reshma and Mandip is 9.6 m.
Q6.  A circular park of radius 20 m is situated in a colony. David are sitting at equal distance on its boundary each having a toy each other. Find the length of the string of each phone.
Sol: In the figure, let Ankur, Syed and David are sitting at A, S
                 
AS = SD = AD
          
i.e. DASD is an equilateral triangle.
          
Let the length of each side of the equilateral triangle is 2x metres.
          
Let us draw AM ⊥ SD.
          
Since DASD is an equilateral,
          
∴ AM passes through O.
          

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!