Polynomial 2.2 class 9th

Online Mock Tests for Class 9  Social Science

 

Ex 2.2 Class 9 Maths Question 1.
Find the value of the polynomial 5x – 4x2 + 3 at
(i)  x = 0
(ii)  x = – 1
(iii) x = 2

 

Solution:

(i) x = 0

5x – 4x2 + 3

p(0) = 5(0) – 4(0)2 + 3

p(0) = 0 -0 + 3

p(0) = 3

 

(ii) x = – 1

5x – 4x2 + 3

p(-1) = 5(-1) – 4(-1)2 + 3

p(-1) = -5 – 4 + 3

p(-1) = -9 + 3

p(-1) = -6

 

(iii) x = 2

5x – 4x2 + 3

p(2) = 5(2) – 4(2)2 + 3

p(2) = 10 – 4(4) + 3

p(2) = 10 – 16 + 3

p(2) = -6 + 3

p(2) = -3

 

 

Ex 2.2 Class 9 Maths Question 2.
Find p(0), p(1) and p(2) for each of the following polynomials
(i) p(y) = y2 – y + 1
(ii) p(t) = 2 + t + 2t2 – t3
(iii) p(x) = x3
(iv) p (x) = (x-1) (x+1)

 

Solution:

p = 0

(i) p(y) = y2 – y + 1

p(0) = (0)2 – (0) + 1

p(0) = 0 – 0 + 1

p(0) = 1

 

p = 1

(i) p(y) = y2 – y + 1

p(1) = (1)2 – (1) + 1

p(1) = 1 – 1 + 1

p(1) = 1

 

p = 2 

(i) p(y) = y2 – y + 1

p(2) = (2)2 – (2) + 1

p(2) = 4 – 2 + 1

p(2) = 2 + 1

p(2) = 3

 

p = 0

(ii) p(t) = 2 + t + 2t2 – t3     

p(0) = 2 + 0 + 2(0)2 – (0)3

p(0) = 2 + 0 + 0 – 0

p(0) = 2

 

p = 1

(ii) p(t) = 2 + t + 2t2 – t3

p(1) = 2 + (1) + 2(1)2 – (1)3

p(1) = 2 + 1 + 2 – 1

p(1) = 5 – 1

p(1) = 4

 

p = 2

(ii) p(t) = 2 + t + 2t2 – t3

p(2) = 2 + 2 + 2(2)2 – (2)3

p(2) = 2 + 2 + 2(4) -(8)

p(2) = 4 + 8 – 8

p(2) = 4

 

 

p = 0

(iii) p(x) = x3

p(0) = (0)3

p(0) = 0

 

p = 1 

(iii) p(x) = x3

p(1) = (1)3

p(1) = 1

 

p = 2

(iii) p(x) = x3

p(2) = (2)3

p(2) = 8

 

 

p = 0

(iv) p (x) = (x-1) (x+1)

p(0) = ( 0 – 1 ) ( 0 + 1 )

p(0) = ( -1 ) ( 1 )

p(0) = -1

 

p = 1

(iv) p (x) = (x-1) (x+1)

p(1) = ( 1 – 1 ) ( 1 + 1 )

p(1) = ( 0 )  ( 2 )

p(1) = 0

 

p = 2

(iv) p (x) = (x-1) (x+1)

p(2) = ( 2 – 1 ) ( 2 + 1 )

p(2) = ( 1 ) ( 3 )

p(2) = 3

 

 

Ex 2.2 Class 9 Maths Question 3.
Verify whether the following are zeroes of the polynomial, indicated against them.

(i)  p(x) = 3x + 1   ,  x = –  \frac{1}{3}

(ii) p(x) = 5x – π  ,  x = \frac{4}{5}
(iii) p(x) = x2 – 1  ,  x = 1 , – 1
(iv) p(x) = (x+1) (x-2)  ,  x = -1 , 2
(v) p(x) = x,  x = 0
(vi) p(x) = lx+m  ,  x = – \frac{m}{l}
(vii) p(x) = 3x-1  ,  x = – \frac{1}{\sqrt{3}}  , \frac{2}{\sqrt{3}}
(viii) p(x) = 2x + 1  ,  x =  \frac{1}{2}

 

Solution:

(i)  p(x) = 3x + 1   ,  x = –  \frac{1}{3}

p(- \frac{1}{3} ) = 3 ( –  \frac{1}{3}) + 1

= - \frac{3}{3} + 1

= – 1 + 1

= 0

–  \frac{1}{3}  is a zeros of p(x)

 

(ii) p(x) = 5x – π  ,  x = \frac{4}{5}

p(  \frac{4}{5} )  = 5 ( \frac{4}{5} ) – π

= \frac{20}{5} – π

= 4 – π

x = \frac{4}{5} is not zeros of p(x)

 

(iii) p(x) = x2 – 1  ,  x = 1 , – 1

p(x) = x2 – 1

p( 1 ) = 12 – 1

= 1 – 1

= 0

x = 1 is a zeros of p(x)

 

p(x) = x2 – 1

p(-1) = -12 – 1

= 1 – 1

= 0

x = – 1 is a zeros of p(x)

 

(iv) p(x) = (x+1) (x-2)  ,  x = – 1 , 2

p(x) = (x+1) (x-2)

p(-1) = (-1 + 1) (-1 – 2)

= 0 ( – 3 )

= 0

x = – 1 is a zeros of p(x)

 

p(x) = (x+1) (x-2)

p(2) = (2 + 1) (2 – 2)

= ( 3 ) ( 0 )

= 0

x = 2 is a zeros of p(x)

 

 

(v) p(x) = x,  x = 0

p(x) = x²

p(0) = (0)²

= 0

x = 0 is a zeros of p(x)

 

 

(vi) p(x) = lx + m  ,  x = – \frac{m}{l}

p(x) = lx + m

p(– \frac{m}{l}) = l (– \frac{m}{l}) + m

= –  \frac{l\times m}{l} + m

= – m + m

= 0

x = – \frac{m}{l}  is a zeros of p(x)

 

 

(vii) p(x) = 3x-1  ,  x = – \frac{1}{\sqrt{3}}  , \frac{2}{\sqrt{3}}

p(x) = 3x-1

p(– \frac{1}{\sqrt{3}}) = 3(– \frac{1}{\sqrt{3}})2 – 1

\frac{3\times 1}{3} – 1

= 1 – 1

= 0

x = – \frac{1}{\sqrt{3}} is a zeros of p(x)

 

p(x) = 3x-1

p( \frac{2}{\sqrt{3}}) = 3( \frac{2}{\sqrt{3}})2 – 1

= \frac{3\times 4}{3} – 1

= 4 – 1

= 3 ≠ 0

x = \frac{2}{\sqrt{3}} is not a zeros of p(x)

 

 

(viii) p(x) = 2x + 1  ,  x =  \frac{1}{2}

p(x) = 2( \frac{1}{2} ) + 1

= \frac{2\times 1}{2} + 1

= 1 + 1

= 2 ≠ 0

x = \frac{1}{2}  is not a zeros of p(x)

 

 

Ex 2.2 Class 9 Maths Question 4.
Find the zero of the polynomial in each of the following cases :
(i) p(x) = x + 5
(ii) p(x) = x – 5
(iii) p(x) = 2x + 5
(vi) p(x) = 3x – 2
(v) p(x) = 3x

 

Solution:

(i) p(x) = x + 5

now p(x) = 0

then ,  x + 5 = 0

x = – 5

\therefore  – 5 is a zero of the polynomial p(x).

 

(ii) p(x) = x – 5

now  p(x) = 0

then ,  x – 5 = 0

x = 5

\therefore  5  is a zero of the polynomial p(x).

 

(iii) p(x) = 2x + 5

now  p(x) = 0

then ,  2x + 5 = 0

2x = -5

x = – \frac{5}{2}

\therefore\frac{5}{2}  is a zero of the polynomial p(x).

 

(vi) p(x) = 3x – 2

now  p(x) = 0

then ,  3x – 2 = 0

3x = 2

x = \frac{2}{3}

\therefore  \frac{2}{3}  is a zero of the polynomial p(x).

 

(v) p(x) = 3x

now  p(x) = 0

then ,  3x  = 0

x = \frac{0}{3}

x = 0

\therefore  0  is a zero of the polynomial p(x).

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!